MATHEMATICAL METHODS IN ECONOMICS - II ECO -HC - 2026

BY

RITU BARUA ASSOCIATE PROFESSOR, DEPT of ECONOMICS BHATTADEV UNIVERSITY, BAJALI

B.A. 2ND SEMESTER STUDY MATERIALS /CLASS NOTES

2nd SEMESTER

B.A....(Ritu Madam 20/04/2020)

Equlibrium of Multiplant Firm

When a firm produces a product (homogeneous) in more than one plant under different cost behaviour then the profit maximizing condition of the firm differs from the normal condition of the normal co

Suppose a firm produces output in

PLANT 1 PLANT 2
$$Q_1 \qquad Q_2$$

$$TC_1 \qquad TC_2$$

$$TC_1 = C_1(Q_1) \qquad TC_2 = C_2(Q_2)$$

And $Q = Q_1 + Q_2$ (i.e =total output is equal to output in PLANT1 & PLANT2)

Hence
$$\Pi = TR - TC$$

$$\Pi = TR - (TC_1 + TC_2) = TR - TC_1 - TC_2$$

Maximization of profit

1st order condition

$$\partial \prod /\partial Q_1 = 0$$
 and $\partial \prod /\partial Q_2 = 0$

2nd order condition

$$|H_1| < 0$$
 and $|H_2| > 0$

Where $|H_2| = |f_{11}|$ $|f_{12}|$ $|f_{21}|$

Solution to last class example

$$: Q_1 = 4.14$$

Price Discrimination :
$$Q_1 = 4.14$$
 $Q_2 = 6.76$ $Q_3 = 4.82$

Profit = 469.79

$$AR_1 = 33.72$$

$$AR_2 = 45.72$$

$$AR_3 = 44.72$$

Solution to multi plant monopolist

$$Q_1 = 6$$
 $Q_2 = 4$ and Profit = 243

Example: A monopolist discriminates prices between two markets 1 and 2 and his average functions are given by

$$AR_1 = P_1 = 55 - 4 Q_1$$

$$AR_2 = P_2 = 25 - 3 Q_2$$

The TC =
$$20 - 5 Q + Q^2$$

- (i) Find profit maximzing output to be sold in the two markets
- (ii) Show that the market with higher elasticity of demand has lower price and vice versa

Example: A monopolist produces his output in three plants and his total output is $Q = Q_1 + Q_2 + Q_3$ His total cost function in each of the plants are

$$TC_1 = 10 - 2 Q_1 + Q_1^2$$

$$TC_2 = 20 - 2 Q_2 + 1/2 Q_2^2$$

$$TC_3 = 50 - 12Q_3 + 2Q_3^2$$
 and his

$$AR = 60 - 5Q$$

Find (i) output to be produced in each of the plants

(ii) maximum profit and equilibrium price

Equilibrium of a Multi Product Firm

A firm produces more than one product. In such situation total revenue of the firm will depend on more than one variable. We will discuss the equilibrium of a firm producing two commodities, Q_1 and Q_2 , jointly (a) under the condition of perfect competition as well as (b) under imperfect condition, say monopoly.

When a firm produces two products Q_1 and Q_2 jointly, the total cost will be a function of Q_1 and Q_2 and so we define

 $TC = C (Q_1, Q_2)$

with $MC_1 = \partial C/\partial Q_1 = C_1(Q_1, Q_2)$ representing the marginal cost of first product and

 $MC_2=\partial C/\partial Q_2=C_2(Q_1, Q_2)$ as the marginal cost of second product assuming that the marginal cost of both products are individually functions of Q_1 and Q_2 .

In a perfectly competitive market, the prices of Q_1 and Q_2 are given to the firm.

If prices are denoted by P₁ and P₂ respectively, the total revenue function will be

$$TR = P_1^*Q_1 + P_2^*Q_1$$

such that

 $MR_1 = \partial (TR)/\partial Q_1 = P_1$ and $MR_2 = \partial (TR)/\partial Q_2 = P_2$

representing marginal revenues of first and second products respectively.

Thus the profit function of multi-product firm can be expressed as

 Π = TR-TC = $P_1^*Q_1 + P_2^*Q_1 - C(Q_1, Q_2)$.

Example: Refer Srinath Barua

.....